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ABSTRACT  
In this paper, inspired by Moody’s BET model, a stochastic hidden Markov model is 
constructed to detect the macro-economic risk states hidden in the corporate default 
data. The observed default statistics are from four geographic regions, namely 
Asia-Pacific, Europe, the U.S. and the globe as a whole. The EM algorithm is applied 
to estimate parameters in each model, where the associated standard errors are 
computed using the Monte Carlo method. The validity of the binomial distribution 
assumption is checked by conducting the Chi-square goodness-of-fit test. When 
compared with the historical recession and expansion periods, most of the estimated 
risk-switching processes are in accord with the actual fluctuations in the 
macro-economy.  
 
Keywords: hidden Markov model; credit default analysis; EM algorithm; Monte Carlo 
method. 
 
1. INTRODUCTION 
The recent global financial crisis has forced academics to take a renewed interest in 
discovering or forecasting risk levels in the macro-economy by modeling with 
financial market data. During the past 10 years, Moody’s and Standard & Poor’s have 
been using corporate default history in different geographical regions to assess the 
performance of their long-term corporate rating mechanisms annually. In 1996, 
Moody’s proposed a Binomial Expansion Technique (BET) to measure the portfolio 
credit risk within a fixed time period (Moody’s, 1996). For simplicity, they assumed 
the bonds in a portfolio defaulted independently and discovered that default counts 
followed a binomial distribution over a fixed time interval. In their research, a 
‘Diversity Score’ was calculated to account for the interaction effects of the member 
bonds in a portfolio, indicating that the risk probability of a portfolio is inversely 
proportional to its degree of diversity. Being a discrete model, Moody’s BET is useful 
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in modeling the occurrence of default events in a given period of time but not at each 
time point. Hence, in Davis and Lo’s paper (2001), they introduced the dynamic 
‘Enhanced Risk Model’ to measure the effects of infectious defaults with a stochastic 
process. Following their theory, the occurrence of a default event in a portfolio would 
‘enhance’ the default probability of the remaining surviving bonds by a factor K. 
Before settling back to ‘normal risk’, the portfolio would stay in the ‘enhanced risk’ 
state where the default time is exponentially distributed. In terms of empirical study, 
Gilchrist et al. (2009) measured the influences of corporate credit spread shock on 
business cycles based on Bayesian ML estimation. In this paper, a similar stochastic 
approach, the hidden Markov model (HMM), was applied to explain the fluctuations 
in the macro-economy. Inspired by Davis & Lo (2001) and Rabiner (1989), the two 
risk states in our model are recognized as hidden macro-economic risk levels and 
follow a two-state Markov-switching process over a specified time period. In addition, 
following Giampieri et al. (2005), a Monte Carlo method is used to estimate the 
standard errors associated with the parameters generated by the 
Expectation-Maximization (EM) algorithm. 
 
The remainder of this paper is organized as follows: Section 2 will cover the 
methodology used and in Section 3, simulation results will be presented to verify the 
reliability of the whole estimation process. Data used in this paper will be described in 
Section 4. In Section 5, parameter estimation results, along with the associated 
standard errors are shown in tables and detailed analysis with real business cycles will 
follow. A Chi-square goodness-of-fit test will be conducted to test the model 
assumption in Section 6. The remaining Sections 7 and 8 will suggest directions for 
future studies and make a final conclusion, respectively. 

 
2. METHODOLOGY 
2.1 Model Description 
The model used in this paper is a two-state HMM, where the states are denoted as 1 
and 2, representing ‘normal risk state’ and ‘enhanced risk state’, respectively. In this 
case, the initial probability of being at either state is stored in matrix π. Following the 
BET by Moody’s (1996), in state 1 the default events in each time step follow a 
binomial distribution with parameter p and the probability of observing D default 
events is P1. To incorporate the effects of one default event on the remaining surviving 
bonds, the parameter in P2 is calculated by multiplying p with a factor K≥1. 
Specifically, N represents the number of bonds remaining ‘alive’ in a portfolio. 

P1(D) = �N
D�pD (1− p)N−D，                                                                                                                              (1)  
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P2(D) = �N
D�

(Kp)D(1 − Kp)N−D，                                                                                                                    (2)  

The above two equations compute the probability of observing all possible counts of 
default events and thus constitute the emission matrix B. In terms of the construction 
of transition matrix A, the following parameters are used: 

A = � a11 1− a11
1− a22 a22

�,                                                                                                                                       (3) 

where a11  denotes the probability of staying in state 1 and a22  denotes the 
probability of staying in state 2. Once given the actual observation sequence and 
HMM, the optimal hidden state sequence can be computed by the Viterbi algorithm. 
According to Rabiner (1989), δt(i) is defined as the highest probability of observing 
the previous t observations at state i, with one hidden state sequence. In this paper, D 
denotes the actual observation; Q denotes the hidden state sequence while λ (A, B,π) 
summarizes all the parameters used in HMM. The essence of the Viterbi algorithm is 
to maximize P (Q|D, λ) and use backtracking steps to retrieve the state path. In this 
HMM, all observations are treated as statistically independent. 
2.2 Parameter Estimation 
One essential problem of the HMM is: Given the actual observation sequence, how 
can P (D|λ) be maximized by estimating the appropriate parameters in the model? 
Referring to Rabiner (1989), the EM algorithm can generate the estimators in the 
HMM which locally maximize P (D|λ). In this algorithm, the forward variable αt(i) 
is defined as the probability of observing the sequence before reaching state i at time t. 
Similarly, the backward variable βt(i) denotes the probability of observing the 
sequence till the end, after being at state i at time t. Hence, the following variables can 
be constructed in terms of the above two: 

τt(i, j) =
αt(i) ∙ Aij ∙ BjDt+1 ∙ βt+1(j)

∑ αt(i) ∙1≤ i ≤ N
1≤ j ≤ N 

Aij ∙ BjDt+1 ∙ βt+1(j)，                                                                                               (4) 

γt (i) =
αt(i) ∙ βt(i)

∑ αt(i) ∙ βt(i)N
i=1

= �τt(i, j) ，                                                                                                           (5)
N

j=1

 

where τt(i, j) represents the probability of being in state i at time t and in state j at 
the next time point, given the model and observation sequence; γt(i) represents the 
probability of being in state i at time t. All these defined variables are then 
implemented into the EM re-estimation procedure. The difference between two 
consecutive likelihood functions eventually converges to a critical value, namely 10-15 
in our case. In the binomial distribution, the maximum likelihood estimator of p is 

calculated as p =  Average  number  of  ′successful′  trials
Total  number  of  trials

. Another important step in realizing 

this algorithm is ‘scaling’ since the forward and backward variables can be extremely 
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small when t gets larger. For simplicity, αt(i)  and βt(i)  are multiplied by 

C1t = 1
∑ αt (i)N

i=1
 and  C2t = 1

∑ βt (i)N
i=1

 respectively to prevent the calculation from 

exceeding the precision range of the computer (Detailed procedures please see 
Rabiner’s paper (1989)). 
2.3 Standard Error Computation 
Due to the inability of EM algorithm to compute the standard errors associated with 
the maximum likelihood estimators, similar to Giampieri et al.’s proposition (2005), 
the Monte Carlo method can be used to calculate the covariance matrix for parameters. 
All the algorithm codes are written in Matlab and can be presented if required. 
 
In this paper, the four parameters concerned are a11, a22, p and K. For each set of data, 
firstly, the estimated HMM parameters are used to generate 100 series of observations 
(number of re-samples), each the same length as the original data. Secondly, for each 
generated sequence, the EM algorithm is used to re-estimate the parameters. The 
covariance matrix C is computed following the formula below:  
 
C =  1

100−1
∑ (Vj − V�100

j=1 )′ ∙ (Vj − V�),                                                                                                                     (6) 

where V� = 1
100

∑ Vj
100
j=1  and Vj is a vector storing four parameters generated by EM 

algorithm each time. Hence, the standard error of each parameter derives from the 
square root of the elements on the diagonal. 
 
3. SIMULATION RESULTS 
Two series of data were simulated to show how EM algorithm works. In this 
simulation, each series contains 100 observations and the algorithm is performed 
twice, using two sets of initial values respectively. It is clear that the algorithm gives 
satisfactory results by both sets of initial values, even though the results from the 
second set of initial values show higher standard errors as the second set differs 
significantly from true parameters. 

Table 1: Simulation Results 

Parameters 
True 

Parameter 

Initial Value 

(1st set) 
Estimated result  

Initial Value 

(2nd set) 
Estimated result 

a11 0.9 0.7 0.9311(0.0372)  0.1 0.8910 (0.0500) 

a22 0.9 0.7 0.9069 (0.0540)  0.1 0.9243(0.0493) 

p 0.006 0.001 0.0057 (0.0003)  0.001 0.0059 (0.0004) 

K 4 2 4.2519 (0.2503)  2 4.0880 (0.2896) 
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This table shows the simulation results using two sets of initial values listed in the 3rd and 5th column. The 
column ‘True Parameter’ lists the parameters used in the simulation; column ‘Estimated Result’ shows 
the parameters estimated by EM algorithm. Standard errors are given in parenthesis and the computation 
process is describe in the section ‘METHODOLOGY’ 

Figure 1 below plots the simulated risk states along with the estimated risk states 
(generated by Viterbi algorithm). Obviously, the algorithm is capable of detecting 
hidden risk switching time points with a high accuracy. 

Figure 1: Simulated Risk States versus Estimated Risk States 

These two sub-figures show the simulated risk states and estimated risk. The left one uses the 1st set of 
initial values while the right one uses the other set. The solid line indicates the simulated number of 
events; the dashed line shows the estimated risk states while the shaded bars indicate simulated risk 
states. 
 
4. DATA 
4.1 Sources 
In this paper, four sets of data are extracted from the appendices in Standard & Poor’s 
and Moody’s annual research reports. The statistics are collected annually and they 
report the changes in default counts from the first day to the last day of each year. 
Below is a detailed description of the data: 
 
Global corporate issuer default counts: The data covers the period of 1920 to 2011. It 
is extracted from Moody’s annual default study (2012) and the statistics in Exhibit 16 
only covers Moody’s rated corporate issuers.  
 
Asia-Pacific corporate issuer default counts: The data covers the period of 1990 to 
2011 - the modern era of bond issuance in this area. Specifically, the geographic 
regions concerned are East Asia (excluding Japan), India, Australia and New Zealand. 
It is extracted from Moody’s Default and Recovery Rates of Asia-Pacific Corporate 
Bond and Loan Issuers, Exhibit 9 (2012). 
 
U.S corporate issuer default counts: The data covers the period of 1981 to 2011. The 
statistics are acquired from all financial and non-financial entities. It is extracted from 
Standard & Poor’s annual U.S. corporate default study, Table 6 (2012). 
 
European corporate issuer default counts: The data covers the period of 1981 to 2011. 
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The geographic regions concerned are listed in Standard & Poor’s Appendix I (2012). 
 
The dates of business cycle expansions and contractions are plotted in Figure 2c, 
Figure 2d and Figure 3. The periods are announced by NBER and CEPR’s dating 
committee (2012). 
4.2 Default Definition 
This paper follows Moody’s and Standard & Poor’s definitions of default, which are 
shown in each annual research report (See S&P’s Annual European corporate study, 
Appendix I (2012)). 
 
5. ESTIMATION RESULTS 
5.1 Parameter Estimation Results 
To estimate the parameters in the HMM, actual default data, as described in the data 
section, constitutes the observation sequence. Within each year, the probabilities that a 
bond would remain in either ‘normal risk state’ or ‘enhanced risk state’ are estimated 
by EM algorithm. P is the average default rate while K accounts for the ‘infectious 
effect’. All results are shown in Table 2, where standard errors are presented in 
parentheses: 

Table 2: Parameter Estimation Results 
Region 

Parameter 
Globe Asia-Pacific Europe the U.S. 

a11 0.9459 (0.0285) 0.8491(0.2336) 0.9444 (0.3324) 0.8571 (0.0800) 

a22 0.7647 ( 0.1812) 0.8458 (0.1657) 0.9999 (0.0743) 0.6667 (0.2061) 

p 0.0007(0.0001) 0.0001(0.0004) 0.0002(0.0038) 0.0006(0.0000) 

K 8.95 (0.5463) 6.66 (1.1012) 7.90 (1.2468) 4.06 (0.2365) 
This table displays the parameters estimated using data from the Globe, Asia-Pacific area, Europe 
and the U.S. Detailed descriptions of the data source are covered in the section ‘DATA’ 
 
Along with the estimated parameters, the most probable hidden state path can be 
computed using the Viterbi algorithm. Sub-figures in Figure 2 below show the 
estimated risk-switching process. For Europe and the U.S., business cycles are plotted 
on the graph, implying the actual risk states of the economy. The dates of business 
cycles are extracted from official dating organizations - the NBER in the U.S. and the 
CPER in Europe (2012). 
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Figure 2: Estimated Risk-switching Process Along With Business Cycles 
 (a)                                 (b) 

    
(c)                                  (d)                                                         

   
These figures illustrate the estimated risk-switching time points generated from EM algorithm. In all 
graphs, an appearance of a shaded bar shows that the macro-economy stays at ‘Enhanced Risk’ state; 
otherwise, it remains at the ‘Normal Risk’ state. The dashed line represents the risk levels indicated by 
business cycles; the solid line plots the observed default counts, using geographic data described in the 
section ‘DATA’. 
5.2 Analysis 
Generally, our model can efficiently detect the macro-economic risk level since the 
hidden states discovered by the HMM coincide with the actual situation. The 
estimated hidden state paths in the above Figures 2 (a, b, c, d) reflect all the periods of 
financial downturn and the underlying causes of the switch in risk states are discussed 
below.  
 
To be specific, in 1932, our model diagnosed a switch in risk states – from normal risk 
state to enhanced risk state (See Figure 2a). This resulted from the ‘Great Depression’ 
in 1929, when world trade and Europe’s credit structure collapsed. In 1932, the U.S. 
economy declined severely and the disaster spread to Europe and Asia-Pacific 
countries such as Thailand and Australia. The financial environment remained 
unfavorable to investors until 1935, when the U.S. government intervened and the 
global labor union regained its power. This is when the risk state detected by our 
model switches back to ‘normal risk state’.  
 
During 1989-1991, Japan’s real estate market underwent a catastrophic period. 
Though Japan is not included in any of the geographic regions analyzed above, it is a 
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developed country and hence has large amounts of international trade across the globe. 
The crash of its housing market led to high corporate bond default rates and therefore, 
the global investors were forced to bear the financial loss. This period is again 
discovered by our model(See Figure 2a for the global data and Figure 2c and 2d for 
results from individual analyses).  
 
Ten years later, as illustrated in all four figures, 2001 was the year when recession 
began. After a boom in the stock market, the Nasdaq collapsed in 2001 due to the 
burst of the dotcom bubble. As a result, a significant amount of corporate bonds 
defaulted and most technology companies filed for bankruptcy (See Figure 2d, a 
switch in states happens in 1999).  
 
Shown in all four subfigures, 2008 was the year when the subprime mortgage crisis 
triggered the global recession and it is when the estimated macro-economic risk state 
switches to ‘enhanced risk state’. This also induced the European sovereign debt crisis 
since Spain and Greece were not able to refinance their government debt. Though 
HMM detects most of the risk-switching time points in the macro-economy, it does 
not account for all economic situations. Taking the Asia-Pacific Analysis as an 
example, HMM fails to detect the enhanced risk period in 1990 (See Figure 2b) due to 
the lack of data. In this case, we only focus on the modern debt era, namely starting 
from 1990. This may explain the incompleteness of the estimated hidden state path.  
 
Another surprising result worth mentioning here is that the hidden state discovered by 
our model does not fit well with the actual business cycle in the European Corporate 
Default Analysis (See Figure 2c). One possible reason might be that in 1993, when the 
European Union was established, business relationships between its member countries 
became closer. As was listed in S&P’s annual report, the number of new issuers and 
the corresponding defaults each year increased dramatically after 1993 (Vazza & 
Torres, 2012). This is when our model detects a switch in risk states. Gradually, the 
intrinsic country-specific economic conditions of EU members converge, which are 
no longer consistent with the historical conditions over the time period analyzed. This, 
to some extent, explains the inability of our model to discover the accurate hidden 
state sequence. 
 
We attempted to address the problem mentioned above by designing a 3-state HMM, 
adding a ‘middle risk state’ to the original model.  
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Figure 3: 3-state HMM for European Corporate Default Analysis 

In this figure, the highest shaded bar indicates ‘Enhanced Risk’ state, the bar of half its length represents 
'Middle Risk’ state while the years without a bar imply that the macro-economy remain at ‘Normal Risk’ 
state. 

Compared with the 2-state HMM, adding one more state produces better results since 
the previously missed switches are detected successfully. In terms of the Chi-square 
goodness-of-fit test, the calculated p-value for the 3-state HMM is 0.0012 (See Table 3), 
indicating that binomial distribution assumption is marginally significant at a 1% 
significance level in this case. 
 
6. CHI-SQUARE GOODNESS-OF-FIT TEST 
Following the procedures proposed by Sullivan (2010), a Chi-Square goodness-of-fit 
test can be conducted as follows to measure the appropriateness of the distribution 
assumption in this model. For each geographic region, we conducted this test on 
either ‘Enhanced Risk State’ data or ‘Normal Risk State’ data, choosing the one with a 
longer observation sequence. Results drawn from four independent tests are listed in 
Table 3. To ensure the validity of the test, regrouping is applied so that more than 80% 
of the expected frequencies of each group are larger than five. 

Table 3: Chi-Square Goodness-of-fit Test 
Region 

Parameter 
Globe Asia-Pacific 

Europe 

(2-state) 

Europe 

(3-state) 
the U.S. 

Number of groups 4 2 3 3 4 

𝛘𝛘𝟐𝟐 5.083 1.167 41.167 13.396 5.500 

Degree of freedom 3 1 2 2 3 

p-value 0.1658 0.2800 0.0000 0.0012 0.1386 
This table displays the results from the Chi-square goodness-of-fit test (Detailed analysis see 
APPENDIX) .  
According to Table 3, at a 5% significance level, the binomial distribution assumption 
in most cases (excluding Europe) is not rejected. Clearly, in the 3-state HMM, the test 
statistic in Europe’s case falls substantially. Though it is not significant at a 5% 
significance level, it is marginally significant at a 1% significance level. As expected, 
in most of the geographic regions, the hypothesized binomial distribution is valid. 
However, in terms of the corporate default data from Europe, our model is less 
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competent in identifying the actual risk switching process. It is possible that the 
business cycle itself is not a flawless indicator of the macro-economic risk level. 
 
7. FURTHER DISCUSSION 
The model implemented in this paper is a 2-state hidden Markov model. Though in 
most cases it captures the macro-economic risk switching process, it still needs further 
improvements. One major limitation of this model lies in the lack of training data, 
which may lead to the inaccuracy of the results produced. Secondly, in this paper, we 
simply follow BET’s two-state proposition. However, suggested by Knoblauch (2004), 
heuristics can be applied to optimize the number of states needed in HMM. Further, in 
this model, we assume that annual observations are statistically independent, but in 
the real world, annual default events may correlate with each other. More generalized 
models should therefore incorporate correlation effects into the original model. 
Additionally, we only use one observation sequence in this model and it is possible 
that a multi-sequence HMM would be more effective in explaining data. Further 
research can also focus on other influential factors in determining macro-economic 
risk states such as the one implied in this paper, the supply risk (due to a surge in the 
number of new issuers). 
 
8. CONCLUSION 
In this paper, a hidden Markov model is applied to explain the corporate default data 
in four geographic regions. To estimate the hidden macro-economic risk states, the 
Viterbi algorithm is used to find the most probable state switching path. In most cases, 
the estimated risk switching processes are in accord with those indicated by real 
business cycles. In addition, the goodness-of-fit test statistically shows the validity of 
the binomial distribution assumption. In Europe’s case, however, the two-state HMM 
lacks explanatory power. After extending it to a 3-state model, it is clear that the 
detected risk switching process fits better with the actual fluctuations in the 
macro-economy. 
 

APPENDIX 
Table 1: Chi-Square goodness-of-fit test for Global corporate default data 

Groups Real Frequency Expected Frequency Component Chi-square 

0-10 41 47 0.765957447 

11-21 12 8 2 

22-32 14 15 0.066666667 

>33 7 4 2.25 
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Sum of Chi-square 5.082624113 

 

Table 2: Chi-Square goodness-of-fit test for Asia-Pacific corporate default data 

Groups Real Frequency Expected Frequency Component Chi-square 

0 6 8 0.5 

>1 8 6 0.666667 

Sum of Chi-square 1.166667 

 

Table 3: Chi-Square goodness-of-fit test for European corporate default data (2-state model) 

Groups Real Frequency Expected Frequency Component Chi-square 

0-10 0 2 2 

11-16 0 11 11 

>16 19 6 28.16667 

Sum of Chi-square 41.16667 

 

Table 4: Chi-Square goodness-of-fit test for European corporate default data (3-state model) 

Groups Real Frequency Expected Frequency Component Chi-square 

0-5 9 16 3.0625 

5-40 4 2 2 

>40 8 3 8.333333 

Sum of Chi-square 13.39583 

 

Table 5: Chi-Square goodness-of-fit test for U.S. corporate default data 

Groups Real Frequency Expected Frequency Component Chi-square 

0-6 1 2 0.5 

6-18 9 5 3.2 

18-30 6 10 1.6 

>30 6 5 0.2 

Sum of Chi-square 5.5 
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