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ABSTRACT This paper verifies that stock markets in Mainland China have leverage effects based on 
various GARCH models. Through model comparison, we found that the EGARCH-t 
model well captures the log-return characteristics of the Shanghai Stock Exchange 
Index (SSEI). By studying the VaR of each model and implementing the Kupiec test, 
we discovered that the TGARCH model under the t-distribution is most effective in risk 
measurement. Moreover, the AIC and SC of the EGARCH model are lower than that of 
the TGARCH model while the Log-likelihood of the EGARCH model is higher than 
that of the TGARCH model; thus, we conclude that the EGARCH model is relatively 
more effective in fitting the log-return series of SSEI. In addition, the 
Beta-Skew-t-EGARCH model is able to simulate log-returns more comprehensively 
because it takes skewness and kurtosis into consideration. The actual failure rate of 
predicting the SSEI series using the TGARCH model is as low as 2.58%. The estimated 
VaR implies that domestic and overseas investors might suffer potential losses if they 
employ these models to predict the stock market direction and that they can optimize 
their investment portfolios by comparing the estimates and VaR from different GARCH 
models.  
Keywords: Time series models; Shanghai Stock Exchange Index; Value at Risk; 
GARCH models. 
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1. INTRODUCTION 

 
The Shanghai Stock Exchange Index (SSEI) has attracted great attention from domestic 
and international investors due to its enormous trading volumes and increasingly 
significant role in the global economy. Capital investors are able to enjoy greater 
economic benefits at lower risks if they are able to make more accurate and timely 
predictions about the long-term trends of SSEI. 

Since the 1970s, past studies have been documenting shortcomings (e.g., in 
handling asymmetric periodic data) of linear time series models and proposing various 
kinds of non-linear time series models. For instance, H. Tong proposed the threshold 
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autoregressive (TAR) model in 1978; Robert F. Engle proposed the Auto-Regressive 
Conditional Heteroskedasticity (ARCH) model in 1982, and; T. Bollerslev proposed the 
Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH) model based on 
the ARCH model in 1986. The introduction of GARCH greatly inspired subsequent 
research on related models such as IGARCH, GJR, EGARCH, and Beta-t-EGARCH 
models, etc. GARCH models are also instructive for research practices. For instance, 
Muhammad Idrees Ahmad et al. (2013) used GARCH models to test and predict 
inflation volatility in Oman. These models were applied in economic and financial 
fields such as forecasting the prices of crude, gold, options, coal and other commodities 
according to their risk factors and values. Time series fitting and forecasting vary with 
the types of model used and underlying hypotheses. 

This study analyzes the volatility and risks of SSEI by comparing different 
GARCH models, which provides statistically and economically useful methods and 
findings. The rest of this paper is divided into four sections as follows: Section 2 
documents related theories as well as reviewing relevant results from past studies. 
Section 3 describes the methods of analysis used in this study, including the data, 
theories and estimation methods of different kinds of GARCH models, VaR, and 
Kupiec tests. Section 4 presents empirical results obtained from this study, including 
basic statistical analysis on the stationarity and ARCH effects of SSEI, estimation of the 
parameters of the MA-GARCH model under t-distribution, analysis of the fitting degree 
of different GARCH models, estimating the information impact curve of SSEI, and 
computation and comparing the effectiveness of VaR estimates using Kupiec tests. The 
findings indicate that the TGARCH-t model has the highest fitting degree. Chapter 5 
summarizes the findings from this study. 
 

 
2. RELATED WORK 

 
China’s stock markets commenced in 1978 and still have shortcomings after many years 
of development. For instance, corporations’ share prices cannot accurately reflect their 
actual fundamental values because the shares prices are heavily affected by 
governmental policies, anthropic factors, and high turnover rates. With the development 
of the financial industry, experts and scholars have been using various theories to 
analyze and explore the stock market situations in China. 

S. H. Yu and Z. T. Wang (2005) conducted an empirical study on China’s stock 
markets by an ARCH model and found that the fluctuations of stock prices were not 
sensitive enough to related information released by firms. For example, they found that 
the returns to SSE stocks were consistent with ARCH effects but the kurtosis coefficient 
of the Shenzhen stock market was relatively high. These findings imply that China’s 
stock markets are characterized by a large degree of speculation. 

C. L. Yue et al. (2001) conducted a study on SSEI from September 23, 1997 to 
December 31, 1999 by GARCH, IGARCH and EGARCH models. The study 
summarized the conditional heteroscedasticity of stock returns in China’s stock markets. 
Moreover, L. X. Wu and L. B. Xu (2002) adopted the stationary distribution theory to 
analyze characteristics of stock returns in China’s stock market. Their empirical 
findings showed that the time series of China’s stock returns are characterized by 
leptokurtic, heavy tails, and a certain degree of stationarity. 
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Past studies generally adopted time series techniques for empirical analysis on 
stationarity, stochasticity, and fluctuations of SSEI. It was pointed out that using 
GARCH to forecast stock returns is merely a theoretical possibility. However, there has 
been scant research from the perspective of building a systematic GARCH model, 
obtaining a specifically fitted model to make predictions, and selecting the best model 
by model comparison. 

 
3. METHODOLOGY 

 
This section explains the research methodology used in this study. This study used data 
on stock indices published by Wind Financial Database to develop various GARCH 
models. EViews version 9 was the software used for implementing the estimations. 

 
3.1 Data Input 
The data used in this study contain historical daily closing SSEI from January 2, 2012 to 
January 9, 2019 (i.e., seven years). SSEI is used because it has practical research value 
and sufficiently represents the volatility and risks of stocks listed on SSE. Moreover, the 
data on SSEI are enormous and frequently updated.  

Assume that Pt represents the closing price at time t, the log-return is expressed by 
rt=lnPt-lnPt-1 that can be calculated in 1,942 groups of log-return. 

 
3.2 Theory of GARCH (𝑝𝑝, 𝑞𝑞) Model Development 

 
3.2.1 GARCH (𝑝𝑝, 𝑞𝑞) and IGARCH (𝑝𝑝, 𝑞𝑞) Models 
Bollerslev et al. (1986) generalized ARCH (𝑝𝑝, 𝑞𝑞) model to GARCH (𝑝𝑝, 𝑞𝑞) model. 
Consider the following GARCH (𝑝𝑝, 𝑞𝑞)  

                   (1) 

where  is the conditional variance for the sequence ,  is an independent and 
identically distributed random variable with a zero mean and a variance of 1 and 
satisfies w≥0, ≥0, ≥0, . The requirements above ensure that 
the sequence  is finite, i.e., the GARCH model is strictly stationary. When 

, the model turns into an IGARCH (𝑝𝑝, 𝑞𝑞) model. 
 
3.2.2 EGARCH (𝑝𝑝, 𝑞𝑞) Model 
Nelson et al. (1991) proposed the EGARCH (𝑝𝑝, 𝑞𝑞) model targeting to make up the 
weakness of the GARCH model in financial risk forecasting. The model considers 
weighted information which reflects the positive and negative asymmetries in the rate of 
return. The model can be expressed as: 

                    (2) 

If , external shocks have asymmetric impacts on share price volatility. If , 
negative external shocks outweigh positive external shocks in affecting stock price 
fluctuations, that is called leverage effects. 
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3.2.3 TGARCH Model 
Glosten et al. (1993) formulated a kind of expanded asymmetric GJR model and 
Zakoian proposed a similar TGARCH model, both are designated to deal with leverage 
effects of the sequence. The model could be interpreted as:  

                       (3) 

  subject to                                    (4) 

where parameters , ,  are nonnegative and satisfy the same restrictions as those 
in the GARCH model. 

 
3.2.4 Beta-Skew-t-EGARCH Model 
Harvey and Sucarrat et al. (2011) discussed some characteristics of the EGARCH model 
and further generalized the EGARCH model to the Beta-Skew-t-EGARCH model. As it 
turned out, the Beta-Skew-t-EGARCH model more effectively fitted the financial 
market after considering the characteristics of leverage effects, heavy tails, skewness 
and other factors. This model has two forms that are known as the single-component 
form and double-component form. This study mainly employs the single-component 
form which can be described as: 

           (5) 

where,  denotes the Skewed-t distribution,  is the volatility rate, 
,  is the standard deviation of ,  is the degree of freedom of the 

model,  is the coefficient of the skewness. In addition,  obeys the distribution with 
mean , degree of freedom , and skewness . When ,  is a right-skewed 
t-distribution; when ,  is a left-skewed t-distribution. In this equation,  is 
the intercept,  is the persistence,  is the ARCH parameter,  is the leverage 
parameter, and  is the conditional scoring item. The greater the absolute value of 

, the more significant the fluctuations of the shock of volatility. 
 

3.3 ARCH Effective Test 
To test for ARCH effects, the Lagrange Multiple test (LM test) is used to determine 
whether there is a set of time series satisfying ARCH effects. The approach is to 
establish an n-order autoregressive model for the squared sequence, , of the time 
series , which can be expressed as:  
                                    (6) 

where,  is an independently and identically distributed random variable with a zero 
mean and a variance of one. Under the null hypothesis that there are no n-order ARCH 
effects in the sequence, the test statistics is Lagrange Multiples:  

                                                 (7) 
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In the above expression,  is the length of the sequence, and  is the R-squared 
figure of Equation (6). Given a significance level of , we reject the original hypothesis 
if the statistics calculated satisfies  or . We believe that 
the time series has n-order ARCH effects, otherwise the original hypothesis should be 
rejected. 

 
3.4 Akaike Information Criterion and Bayesian Information Criterion 
The Akaike Information Criterion (AIC) is created by Akaike, a Japanese statistician, in 
a study on determining the order of a time series model. It is widely used for evaluating 
the effectiveness of a statistical model in fitting the data. The AIC can be defined as 
follows:  

                                               (8) 
where,  is the maximum likelihood functions of the model and  represents the 
number of independent parameters of the model. The model is optimized when the AIC 
value is minimized. 

Hurvich and Tsai (1989) optimized the AIC criterion by adding a nonrandom 
penalty term, which is defined as: 

                                             (9) 

In Equation (9),  is the number of all parameters except the noise variance;  
denotes the sample size. 

Bayesian Information Criterion, also known as BIC, offsets some defects of AIC 
and improves its functions. The expression is as follows: 

                                         (10) 
where,  represents the maximum likelihood function,  is the total number of the 
model’s parameters,  is the total sample size, which is the same as that in AIC. 

In real-life questions, AIC and BIC can be applied in the following ways: 
(1) Select suitable models based on real-life questions; 
(2) Use maximum likelihood estimation (MLE) method to estimate the parameters of 
the model; 
(3) Choose the ultimate model with the lowest values of AIC and BIC. 
 
3.5 VaR Theory and Computation Effects Test 
VaR stands for value at risk proposed by JP Morgan in the 1990s and is widely applied 
to risk evaluation nowadays. VaR is mainly applied to estimate the maximum possible 
loss of a portfolio during a given continuous period under a normal market situation and 
specific confidence criteria. The expression is given as follows: 

                                                  (11) 
In the above expression,  denotes the loss suffered during a particularly 

continuous period;  denotes a specific confidence criterion. 
Jorion et al. (1996) developed a computation of VaR denoted as 

. In this equation,  is the expectation of the portfolio,  is the 
closing price of the assets, and  represents the closing price of the assets under  
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conditions. The computation of VaR can be deduced on the following basis:  
                                               (12) 

In the above expression,  is the opening price of the asset,  is the rate of 
return based on the closing price of the asset under  conditions,  is the rate of 
return based on the closing price of the asset,  is the expectation of the rate of 
return or the rate of return of the portfolio,  is the volatility rate of the portfolio. 

To summarize, the computation of VaR under normal distributions is as follows: 
                                              (13) 

where,  denotes the opening price of the assets,  denotes the -quantile under 
the specific distribution,  denotes the volatility rate and  denotes the holding 
period of the assets. In terms of the computation of VaR given above, we should 
calculate the volatility rate  first if we want to calculate the value of VaR, and then 
implement an accuracy test on the two values. The Kupiec test indicates that this 
calculation is a failure event if the test result is larger than the value of VaR, otherwise 
the calculation is a successful event. 

When VaR equals , the corresponding expectation of the possibility of a failure 
event is  and the whole curve approximately follows the Bernoulli distribution, i.e., 

. When the test period is  days and that of the failure event is  days, the 

failure rate can be written as . As such, the accuracy test can be conducted to 

check whether  keeps in pace with .  
Kupiec also proposed the concept of likelihood ratio test for the null hypothesis 

, which is defined as follows:  
                       (14) 

Under the null hypothesis, . The statistic  has a Chi-square distribution with 
the degree of freedom equal to 1. 

 
4. EXPERIMENTAL RESULTS 

 
4.1 Statistical Analysis on the Log-Return Series of SSEI 
 
4.1.1 A Normal Distribution Test for the Log-Return Series 
We used the statistical software EViews9 to implement a basic statistical analysis on the 
log-return series of SSEI. The first step is to analyze the data which is presented in 
Figure 1. 

(1) The skewness is -1.056439. The data as shown in Figure 1 skews to the left as a 
whole. As we know, the skewness is 0 for a normal distribution and thus the null 
hypothesis is rejected. In conclusion, the log-return series is not in a normal distribution 
and there exists a heavy tail. 

(2) The kurtosis is 9.927555, which is much larger than 3 as in the normal 
distribution. The log-return series therefore has leptokurtic features. 

(3) The results of a Jarque-Bera (JB) test on the log-return series is 3730.881 (i.e., 
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the JB statistics) with a probability equal to 0.000000. However, in a Chi-square 
distribution, the degree of freedom = 2 has a critical value of 5.991465 at the 5% level 
of significance. The null hypothesis is also rejected because the JB statistics is much 
larger than the critical value. In conclusion, the log-return series is not in a Chi-square 
distribution. 

 
 
 
 
 
 
 
 
 

 

 

 

FIGURE 1: Histogram of the log-return of SSEI 
 
Figure 2 displays the time series of the log-returns of SSEI. From the figure we can 

conclude that the volatility of the time series tends to be intensive initially and then 
slow-down over time. As a whole, the time series is characterized by volatility 
clustering, leptokurtic, and heavy tail. 

 
 
 
 
 
 

 
 

 

 

 

 

 

FIGURE 2: Graph of the time series of log-return of SSEI 
 
According to the Quantile-Quantile (Q-Q) Plot of the log-return time series as 

presented in Figure 3, there are quantities of points outside the normal (red) line as well 
as a swing at the lower part of the line, which indicates that the log-return series has the 
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heavy tail characteristic. 
 
 
 
 
 
 
 
 
 

 
 

 

 

FIGURE 3: Q-Q Plot for the time series of log-return of SSEI 
 

4.1.2 Stationarity Test for the Log-Return Series 
Implementing the Phillips-Perron (P-P) unit root test on the time series using EViews9 
gives the results as shown in Table 1. 

 
 

Phillips-Perron Unit Root Test 
Null Hypothesis: D (Log-returns) has a unit root 

   Adj. t-Stat Prob.* 

Phillips-Perron test statistic  -420.6198 0.0001 

Test critical values:    

 1% level   -3.963434  

 5% level  -3.412447  
 

10% level  -3.128171  

TABLE 1: Results of the P-P unit root test for the log-return of SSEI 
 
In terms of the results from Table 1, we find that the corresponding critical values 

of the test statistics at the levels of 1%, 5% and 10% are all larger than the P-P statistics. 
In other words, the null hypothesis of a unit root is rejected. In other words, the time 
series is stationary. 
 
4.1.3 Autocorrelation Test 
We used EViews9 to test for the existence of autocorrelation in the time series and set 
the lag operator equal to 12. From Figure 4, the time series is stationary with 
autocorrelation, especially at the sixth order where the correlation is significant. Hence, 
we established the mean square equation with AR (1), AR (2), AR (3), AR (4), AR (5), 
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AR (6), MA (1), MA (2), MA (3), MA (4), MA (5) and MA (6). 
 
 
 
 

 
 
 
 
 
 
 

FIGURE 4: Graph of the correlogram of the log-return series of SSEI 
 

First, we tried to determine the order of each model. The experimental results are 
shown in Figures 5.1 and 5.2. According to the adjoint probability presented in the 
figures, we find that AR (1), AR (4), AR (6), MA (1), MA (4) and MA (6) are all highly 
effective. 

 
 

Variable Coefficient Std. Error t-Statistic Prob.  
AR (1) 0.047132 0.014987 3.144821 0.0017 

AR (2) -0.032825 0.013980 -2.347959 0.0190 

AR (3) 0.011505 0.013542 0.849562  0.3957 

AR (4) 0.066069 0.014577 4.532283 0.0000 

AR (5) 0.000645 0.015366 0.041983 0.9665 

AR (6) -0.074367 0.017256 -4.309650 0.0000 

FIGURE 5.1: Results of significance test for AR models 

 

Variable Coefficient Std. Error t-Statistic Prob.  
MA (1) 0.055003 0.014895 3.692585 0.0002 

MA (2) -0.025329 0.014044 -1.803513 0.0715 

MA (3) 0.008487 0.014091 0.602284  0.5471 

MA (4) 0.056597 0.015000 3.773178 0.0002 

MA (5) 0.001628 0.015399 0.105705 0.9158 

MA (6) -0.079018 0.016912 -4.672312 0.0000 

FIGURE 5.2: Results of significance test for MA models 
 
Based on the above-mentioned results, we built various ARMA models and 

discovered that ARMA (4,4), ARMA (4,6) and ARMA (6,4) are more effective than the 
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other models. Comparing the values of AIC and SC, we ultimately found that ARMA 
(4,6) is the optimal model. The following Tables 2.1, 2.2 and 2.3 are the test results of 
the three models. 

 
Variable Coefficient Std. Error t-Statistic Prob.  

AR (4) 0.0773318 0.077160 10.02223 0.0000 

MA (4) -0.710318 0.086288 -8.231956 0.0000 

AIC -5.697354 

SC -5.687789 

Table 2.1: Results of significance test for ARMA (4,4) 

 
Variable Coefficient Std. Error t-Statistic Prob.  

AR (4) 0.065559 0.014240 4.603741 0.0000 

MA (6) -0.073750 0.016893 -4.365611 0.0000 

AIC -5.697915 

SC -5.688350 

Table 2.2: Results of significance test for ARMA (4,6) 

 

Variable Coefficient Std. Error t-Statistic Prob.  
AR (6) -0.074416 0.016994 -4.379006 0.0000 

MA (4) 0.059433 0.014609 4.068396 0.0000 

AIC -5.697534 

SC -5.687969 

Table 2.3: Results of significance test for ARMA (4,6) 
 
According to results as shown in Table 2, the coefficients of three models are 

significant, the residuals are not correlated, and the values of the AIC and SC are small, 
which indicates that all of the above three models fit the data well. Additionally, the AIC 
and SC of ARMA (4,6) are -5.697915 and -5.688350, which are the lowest among these 
models. 

 
4.1.4 ARCH Effects Tests 
After creating the mean square equation of ARMA (4,6), the residual series could be 
formed. In accordance with the fluctuations as shown in Figure 6.1, the volatility 
clustering of the time series is obvious, thus ARMA (4,6) has significant ARCH effects. 
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FIGURE 6.1: Graph of residuals of the log-return series 
 
We then implemented the ARCH-LM test as shown below. Based on Figure 6.2 

showing the correlogram of the squared residuals, we found that the partial correlation 
coefficient is truncating in the fifth order. Thus, we set the lag operator equal to 5.  

 
 
 
 
 
 

 
 
 
 

FIGURE 6.2: Graph of the correlogram of squared residuals 
 
The results of the ARCH-LM test are shown in Table 3. As the table presented, the 

probabilities of the F-statistics and the Obvious*R-squared are both 0.0000. In addition, 
the values of the two statistics are 57.35580 and 246.1686, respectively, which are much 
larger than the critical value. Hence, the null hypothesis is rejected, i.e., the ARCH 
effects in the time series are significant and the GARCH can be used for modelling. 

 
Variable Coefficient Std. Error t-Statistic Prob.  

C 7.81E-05 1.46E-05 5.331066 0.0000 

RESID^2 (-1) 0.103304 0.024193 4.270012 0.0000 

RESID^2 (-2) 0.162911 0.024191 6.734340  0.0000 

RESID^2 (-3) 0.148217 0.024246 6.113072 0.0000 
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RESID^2 (-4) 0.100949 0.024192 4.172762 0.0000 

RESID^2 (-5) 0.082378 0.024185 3.406128 0.0007 

Heteroskedasticity Test: ARCH   

F-statistic    57.35580 Prob (F-statistic) 0.0000 

Obs*R-squared   246.1686 Prob. Chi-Square 0.0000 

TABLE 3: Results of ARCH-LM test (Heteroskedasticity test: ARCH) 
 

4.2 Estimation and Analysis of the GARCH Models’ Parameters 
We used EViews9 to estimate the parameters of the first three models and used the 
betategarch package of R Software to estimate the parameters of the fourth model (i.e., 
the Beta-Skew-t-EGARCH model). The method is explained in detail in the following 
sections. 

 
4.2.1 Creating MA (6)-GARCH (1,1)-t Model 
Table 4 presents the estimation results for the model parameters, where  is the degree 
of freedom. As a whole, the estimated parameters conform to the application conditions 
of the model. Besides,  is significant at the 5% level and other parameters are all 
significant at 1% level. Moreover, the AIC and SC are -6.194115 and -6.178173, 
respectively, which indicates that the model is well-fitted. Furthermore, + 

=0.998056<1 suggesting that the model is stationary. 
 

Variable Coefficient Std. Error z-Statistic Prob.  
MA (6) -0.054200 0.023501 -2.306261 0.0211 

 

9.38E-07 4.09E-07 2.293277 0.0218 

 0.060220 0.011390 5.287097 0.0000 

 0.937836 0.009883 94.89864 0.0000 

 4.356378 0.531822 8.191426 0.0000 

AIC -6.194115 

SC -6.178173 

TABLE 4: Estimation results of parameters of MA (6)-GARCH (1,1)-t model 
 
Variable Coefficient Std. Error t-Statistic Prob.  

C 0.970248 0.059474 16.31390 0.0000 

WGT_RESID^2 (-1) -0.030491 0.024234 -1.258220 0.2085 

WGT_RESID^2 (-2) 0.021248 0.024235 0.876743  0.3807 

Heteroskedasticity Test: ARCH   

F-statistic 1.211497 Prob (F-statistic) 0.298008 

Obs*R-squared     2.423813 Prob. Chi-Square 0.2976 

TABLE 5: Results of ARCH LM test for MA (6)-GARCH (1,1)-t model 
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Afterwards, we tested for the ARCH effects in the model. Detailed results are 
presented in Table 5. From Table 5 with the lag operator equal to 2, we can conclude 
that the probabilities of the F-statistics and Obs*R-squared are 0.2980 and 0.2976, 
respectively, which are larger than the critical level of 0.05. In addition, the values of the 
two statistics are both smaller than the given critical value of 5.991465. Thus, we accept 
the null hypothesis that the ARCH effects have been eliminated and it is reasonable to 
use MA (6)-GARCH (1,1) for forecasting. 

 
4.2.2 Establishing ARMA (3,3)-EGARCH (1,1)-t Model 
As shown in Table 6.1, majority of the parameters are significant at the 1% level and the 
leverage coefficient  equals -0.017641<0, which means that there are leverage effects 
in the time series of SSEI and that the fluctuations caused by negative news outweigh 
those by positive news.  

In addition, + =0.143599+0.992045=1.135644>1, indicating that the current 
volatilities cause continuous influences towards subsequent predictions. The AIC and 
SC are -6.196461 and -6.174142, respectively, suggesting that the model is well-fitted.  

 
Variable Coefficient Std. Error z-Statistic Prob.  

AR (3) -0.785902 0.149264 -5.265162 0.0000 

MA (3) 0.818362 0.138324 5.916262 0.0000 

 

-0.174041 0.037496 -4.641549 0.0000 

 0.143599 0.022210 6.465666 0.0000 

 -0.017641 0.013421 -1.314481 0.1887 

 0.992045 0.003466 286.1950 0.0000 

 4.406151 0.541142 8.142316 0.0000 

AIC -6.196461 

SC -6.174142 

TABLE 6.1: Estimation results of parameters of ARMA (3,3)-EGARCH (1,1)-t model 
 
 
Variable Coefficient Std. Error t-Statistic Prob.  

C 0.962729 0.059507 16.17840 0.0000 

WGT_RESID^2 (-1) -0.029895 0.024228 -1.233892 0.2174 

WGT_RESID^2 (-2) 0.030326 0.024230 1.251617  0.2109 

Heteroskedasticity Test: ARCH   

F-statistic  1.593749 Prob (F-statistic) 0.203466 
Obs*R-squared     3.187148 Prob. Chi-Square 0.2032 

TABLE 6.2: Results of ARCH LM test for ARMA (3,3)-EGARCH (1,1)-t model 

 
We then conducted ARCH LM tests on the model with the lag operator equal to 2. 

The results are shown in Table 6.2. The F-statistics and Obs*R-squared are 1.593749 
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and 3.187148, which are both smaller than the given critical value of 5.991465. The 
corresponding probabilities of F-statistics and Chi-Square are 0.2035 and 0.2032 
respectively, which means that the null hypothesis is accepted. That is to say, the ARMA 
(3,3)-EGARCH (1,1)-t model has no ARCH effects and can be used for prediction. 
 
4.2.3 Creating ARMA (3,3)-TGARCH (1,1)-t Model 
As presented in Table 7.1, all of the estimated parameters satisfy the requirements of the 
model. All of the estimated parameters are significant at the 1% level except for the 
leverage coefficient. The values of the AIC and SC are -6.192227 and -6.169908, which 
indicates that the model is effective. However, the leverage coefficient, , is larger than 
0 and is significant at the 10% level, which means that it is reasonable to believe that 
the SSEI series has leverage effects. 

 
Variable Coefficient Std. Error z-Statistic Prob.  

AR (3) -0.758254 0.161242 -4.702573 0.0000 

MA (3) 0.794105 0.150075 5.291390 0.0000 

 

1.03E-06 4.27E-07 2.420603 0.0155 

 0.054054 0.013903 3.888054 0.0001 

 0.014626 0.016839 0.868562 0.3851 

 0.992045 0.003466 286.1950 0.0000 

 4.360087 0.532778 8.183680 0.0000 

AIC -6.192227 

SC -6.169908 

TABLE 7.1: Estimation results of parameters of ARMA (3,3)-TGARCH (1,1)-t model 
 
Then we again adopted the ARCH LM tests to examine the model with the lag 

operator equal to 2. As Table 7.2 shows, the F-statistics and Obs*R-squared are 
1.245167 and 2.491080, which are both smaller than the given critical value of 
5.991465. The corresponding probabilities of the F-statistics and Chi-Square are 0.2882 
and 0.2878, respectively, so we accept the null hypothesis that the ARMA 
(3,3)-TGARCH (1,1)-t model has no ARCH effects and is effective in forecasting. 

 
Variable Coefficient Std. Error t-Statistic Prob.  

C 0.974225 0.059442 16.38959 0.0000 

WGT_RESID^2 (-1) -0.032343 0.024235 -1.334572 0.1822 

WGT_RESID^2 (-2) 0.019331 0.024236 0.797619 0.4252 

Heteroskedasticity Test: ARCH   

F-statistic  1.245167 Prob (F-statistic) 0.288155 
Obs*R-squared     2.491080 Prob. Chi-Square 0.2878 

TABLE 7.2: Results of ARCH LM test for ARMA (3,3)-TGARCH (1,1)-t model 
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4.2.4 Beta-Skew-t-EGARCH (1,1) Model 
We adopted the betategarch-package of R Software to implement the parameter 
estimation. The estimation results presented in Table 8 show that all of the estimated 
parameters are significant at the 1% level. Note that  is the degree of freedom. 

 represents the leverage coefficient, which means that the SSEI series has 
leverage effects.  indicates that the distribution is 
right-skewed rather than left-skewed. 

 Moreover,  0.96055416+0.001710015 = 0.96226417 is 
smaller than 1, suggesting that the time series is stationary. In conclusion, the model is 
capable of predicting the time series. 

 
4.2.5 Comparison of Different Models 
In all of the models we have formulated in previous sections, the estimated parameters 
are all significant, so it is reasonable to believe that these models are effective. The 
asymmetric coefficients of the latter three asymmetric GARCH models are also 
significant, which indicates that the SSEI series has leverage effects. In fact, stock 
markets are known to have leverage effects, and thus asymmetric models should be 
more effective than a simple GARCH model in predicting the series. Moreover, the 
asymmetric coefficient of the EGARCH model is more sensitive and significant than 
that of the TGARCH model. Furthermore, the AIC and SC of the EGARCH model are 
smaller than those of the TGARCH model while the value of Log-likelihood of the 
EGARCH model is larger than that TGARCH model, thus we conclude that the 
EGARCH model is relatively more effective in fitting the log-returns of SSEI. The 
Beta-Skew-t-EGARCH model simulates the log-returns more comprehensively because 
this model takes the skewness and kurtosis into consideration. 
 

 
 
 
 

 

 

 

 

TABLE 8: Estimation results of parameters of Beta-Skew-t-EGARCH (1,1) model 

 
4.3 Information Impact Curve of SSEI 
To analyze the log-return series of SSEI more intuitively, we plot a graph to describe the 
volatility of the time series influenced by the information impact based on the ARMA 
(3,3)-EGARCH (1,1)-t model as shown in Figure 7. In the figure, the left-hand-side and 
right-hand-side represented the shocks from unfavorable and favorable information, 
respectively. We can easily find that the curve is asymmetric and that the left-hand-side 
is steeper than the right-hand-side. Therefore, the SSEI series has leverage effects – the 
impact of bad news outweighs that of good news on the log-return series of SSEI.  
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FIGURE 7: Information impact curve for log-returns series 

 
4.4 Analysis and Testing of VaR Computation for the Log-returns of SSEI 
Since the GARCH models under t-distribution as established in previous sections can fit 
the changes of the log-return series of SSEI, we use these GARCH models under 
t-distribution to estimate the value of VaR. The calculation steps are as follows: 
(1) Use EViews9 software to calculate the parameters of each model; 
(2) Compute conditional variance based on the parameters, and then obtain the volatility 

rate series  by calculating the square root of the conditional variance;  
(3) Substitute  into  to obtain the daily value of VaR. 
where,  is the  quantile of the t-distribution. EViews9 was used to obtain the 
results presented in Table 9. 

Next, we computed the value of VaR and the results are presented in detail in Table 
10. From Table 10, we can conclude that the value of VaR is a little bit different 
between the four models under t-distribution. We analyzed the VaR that we had 
calculated by using R=C to evaluate the actual profit and loss because we were able to 
observe the number of failure days and compute the corresponding failure rates. In order 
to visualize the changes of VaR and the log-return series, we use a positive value to 
represent an actual loss and a negative value to represent an actual profit. The results of 
the predicted VaR are plotted in Figure 8. 
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Confidence 

level 
GARCH model EGARCH model TGARCH model 

Beta-Skew-t-EGARCH 

model 

95% 2.082712 2.076619 2.082252 1.777451 

TABLE 9: Quantiles of different GARCH models under t-distribution 
 
 

Models GARCH model EGARCH model TGARCH model 
Beta-Skew-t-EGA

RCH model  

Mean 77.5295868148 76.6110523452 77.5466345175 83.9403 

Std. Dev. 53.4941012 52.3868275 53.88683447 59.3013 

Maximum 316.5740863803 336.8295446819 320.7757886582  323.7642 

Minimum 29.0848046340 28.6220594053 29.4778174260 31.4115 

Median 55.4903872124 54.6948929949 54.9834935056 56.2053 

TABLE 10: Results of Value at Risk under t-distribution 
 
 
 
 
 
 
 

 
 
 

FIGURE 8.1: Graph of the VaR Test for SSEI fitting with MA (6)-GARCH (1,1) model 

 

 
 

 
 
 
 
 

 

FIGURE 8.2: Graph of the VaR Test for SSEI fitting with ARMA (3,3)-EGARCH (1,1) model 
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FIGURE 8.3: Graph of the VaR Test for SSEI fitting with ARMA (3,3)-TGARCH (1,1) model 

 

FIGURE 8.4: Graph of VaR Test for SSEI fitting with Beta-skew-t-EGARCH (1,1) model 
 
The results in Table 11 demonstrate the risk measurement effectiveness and the 

failure rate of each model at the 95% confidence level.  
 

Models 
Expected 

Failure Rate 

Expected 

Failure Days 

Actual 

Failure Days 

Actual 

Failure Rate 
LR 

GARCH model  5% 85 44 2.58% 2.5215 

EGARCH model  5% 85 46 2.70% 2.9367 

TGARCH model 5% 85 44 2.58% 2.5215 

Beta-Skew-t-EG

ARCH model 
5% 85 57 3.34% 3.1401 

Note: A total of 1706 days 

TABLE 11: Failure rate test of log-returns of SSEI 
 
Based on Table 11, we can say that, in general, the actual failure days and failure 

rates of these models obey the t-distribution and are both smaller than the expected 
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failure days and failure rates, respectively. The LR of these four models are smaller than 
the critical value of =3.84, which suggests that the models are effective in 
predicting the VaR of the SSEI series. Also, by comparing the goodness of fit and the 
VaR across the models, we found that TGARCH model is the best in analyzing the 
log-return series of SSEI. 
 

5. DISCUSSION AND ANALYSIS 
The academia and the industry both pointed out that it is essential to forecast stock 
prices in terms of time series analysis. However, it is not an easy task to precisely 
forecast stock prices due to the variability, complexity and other unique characteristics 
of stock prices. Moreover, stock prices are usually affected by many factors, with some 
of them quantifiable and some non-quantifiable. This creates high obstacles to research 
projects on this issue. With the development of modern statistical methods, researchers 
have started to pay more attention to how well time-series models fit the sample data 
and to focus on improving the existing models. For example, when we implement a 
complete regression analysis, the model may fit a specific set of data so well that the 
same model cannot be applied to other sets of data, which is known as overfitting. 
Under this circumstance, the significant difference in terms of fitting degree between 
the sample data and the out-of-sample data makes the prediction results not applicable 
in practice, especially when there are sudden changes that the model cannot sensitively 
respond to. This paper aims to identify a model that is stationary even for out-of-sample 
data by comparing modern and traditional statistical models. Based on a commonly 
examined financial time series, this paper elaborates various forecasting methods used 
in the financial industry as well as related algorithms and then applies them in the 
industry to implement the prediction. 

In the process of estimating the parameters of the four models, we found that the 
fitting degree of the EGARCH model under t-distribution is the best for predicting the 
log-return series of SSEI. We also discovered that the SSEI series has leverage effects 
via analyzing the information impact curve. Moreover, we compared the GARCH 
models under different distributions to examine the SSEI series and verified that the 
TGARCH model under t-distribution fits well the volatility of the stock market. In 
addition, we implemented the Kupiec test and found that the TGARCH model follows a 
t-distribution and has the most effective VaR estimation. Furthermore, the distribution of 
interference factors can be divided into non-parametric or semi-parametric, which is 
more convenient for calculating quantiles. In this study, we implemented the Maximum 
Likelihood Estimation (MLE), the Gaussian Mixture Model (GMM), the Least Absolute 
Deviation (LAD) as well as the Empirical Likelihood Estimation (ELE), etc., because 
we believe that these estimation methods are more effective compared to the traditional 
MLE and Least Square Estimation (LSE). For future research, additional parameters 
reflecting industrial characteristics can be added to the models and the estimation 
methods for the parameters, which will make the forecasting of financial risks more 
reliable and accurate. 
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